大概是在年初那會兒,陸舟還沒有將陳陽從燕大數學中心挖來的時候,這位陳教授便在研究霍奇猜想了。
陸舟還記得,當時他在黑板上研究自己的超橢圓曲線分析法,並且用了一種非常巧妙的方法,將這個原本為準黎曼猜想設計的數學工具,改進之後直接運用在了對非奇異復代數簇的代數拓撲,以及其定義子簇的多項式方程所表述的幾何關聯問題的研究上。
當初也正是因為這一手漂亮的操作,讓陸舟不禁動了愛才之心,將他從燕大數學中心挖到了金陵這邊來。
現在已經過去快一年了,關於霍奇猜想的課題仍然沒有絲毫的進展,再加上前段時間一直在忙代數幾何統一理論的事情,以至於陸舟都快把這件事給忘了。
“走,去我辦公室說。”
帶著陳陽來到了自己的辦公室,陸舟親自去牆角幫他拖來了一張白板,並且將自己的記號筆遞到了他的手上。
沒有將時間浪費在客套上,接過了筆之後,站在白板前的陳陽思索了片刻,首先在白板上隨手畫了個圓,然後在旁邊標記了S,並寫下了一行表示式。
“……對於緊緻無邊的曲面S,其Gauss曲率K可以在整個曲面上進行積分。”
一邊寫著,陳陽一邊繼續說道。
“眾所周知的是,一個曲面不一定只容有一個度量,所以我嘗試對S的度量進行了更換。在更換了度量之後,相應的Gauss曲率K同樣也會發生改變,但積分值卻與曲面的度量無關,而只與曲面的Euler示性數X(S)有關,利用這一性質,我們可以——”
Loading...
未載入完,嘗試【重新整理】or【退出閱讀模式】or【關閉廣告遮蔽】。
嘗試更換【Firefox瀏覽器】or【Chrome谷歌瀏覽器】開啟多多收藏!
移動流量偶爾打不開,可以切換電信、聯通、Wifi。
收藏網址:www.peakbooks.cc
(>人<;)